Search results for "mesoporous nanoparticles"

showing 4 items of 4 documents

Enhanced antifungal efficacy of tebuconazole using gated pH-driven mesoporous nanoparticles

2014

Núria Mas,1–3 Irene Galiana,3 Silvia Hurtado,† Laura Mondragón,1–3 Andrea Bernardos,1–3 Félix Sancenón,1–3 María D Marcos,1–3 Pedro Amorós,4 Nuria Abril-Utrillas,5 Ramón Martínez-Máñez,1–3 José Ramón Murguía1,3 1Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Centro Mixto Universidad Politécnica de Valencia, Universidad de Valencia, Valencia, Spain; 2Departamento de Química, Universidad Politécnica de Valencia, Valenci…

INGENIERIA DE LA CONSTRUCCIONMaterials scienceAntifungal AgentsPH-responsive nanoparticlesCell Survivalmedia_common.quotation_subjectCapped mesoporous nanoparticlesBiophysicsPharmaceutical ScienceNanoparticleBioengineeringSaccharomyces cerevisiaeNanocapsulesBiomaterialsDiffusionchemistry.chemical_compoundNanoporesQUIMICA ORGANICANanocapsulesInternational Journal of NanomedicineDrug DiscoveryQUIMICA ANALITICABIOQUIMICA Y BIOLOGIA MOLECULARFluoresceinParticle SizeCytotoxicityInternalizationmedia_commonTebuconazoleOriginal ResearchIntracellular releaseOrganic ChemistryQUIMICA INORGANICADrug SynergismGeneral MedicineMesoporous silicaHydrogen-Ion ConcentrationTriazoleschemistryBiochemistryDelayed-Action PreparationsBiophysicsTebuconazole loadingMesoporous materialPorosityInternational Journal of Nanomedicine
researchProduct

The Influence of Nanoparticle Shape on Protein Corona Formation

2020

Nanoparticles have become an important utility in many areas of medical treatment such as targeted drug and treatment delivery as well as imaging and diagnostics. These advances require a complete understanding of nanoparticles' fate once placed in the body. Upon exposure to blood, proteins adsorb onto the nanoparticles surface and form a protein corona, which determines the particles' biological fate. This study reports on the protein corona formation from blood serum and plasma on spherical and rod‐shaped nanoparticles. These two types of mesoporous silica nanoparticles have identical chemistry, porosity, surface potential, and size in the y ‐dimension, one being a sphere and the other a …

rod shapeSurface Propertiesnanoparticle shapeNanoparticleProtein Corona02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialsCorona (optical phenomenon)protein coronaAdsorptionBlood serumDrug Delivery SystemsGeneral Materials ScienceChemistryAlbuminsphere shapeGeneral ChemistryMesoporous silica021001 nanoscience & nanotechnologySilicon Dioxideprotein adsorption0104 chemical sciences3. Good healthBiophysicsbio-nanoparticle interactionsNanoparticlesProtein Corona0210 nano-technologymesoporous nanoparticlesBiotechnologyProtein adsorption
researchProduct

Selective and Sensitive Chromofluorogenic Detection of the Sulfite Anion in Water Using Hydrophobic Hybrid Organic-Inorganic Silica Nanoparticles

2013

[EN] In water and wine: Chromofluorogenic detection of the sulfite anion in pure water was accomplished by using a new hybrid organic-inorganic material that contained a probe entrapped in hydrophobic biomimetic cavities. This material was used for the detection of sulfite in red wine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

INGENIERIA DE LA CONSTRUCCIONOrganic-inorganic hybrid materialsInorganic chemistryWineSO2Electrochemical detectionMesoporous nanoparticlesCatalysisSilica nanoparticleschemistry.chemical_compoundQUIMICA ORGANICASulfiteQUIMICA ANALITICAOrganic inorganicAsthmatic-patientsElectrochemical detectionAsthmatic patientSpectrophotometric methodSensorsFood analysisBisulfiteQUIMICA INORGANICAGeneral ChemistryGeneral MedicineDerivatizationFoodschemistrySulfiteRatiometric fluorescent-probeCapillary electrophoretic determinationNuclear chemistryAngewandte Chemie
researchProduct

Not always what closes best opens better: mesoporous nanoparticles capped with organic gates

2019

ABSTRACT Four types of calcined MCM-41 silica nanoparticles, loaded with dyes and capped with different gating ensembles are prepared and characterized. N1 and N2 nanoparticles are loaded with rhodamine 6G and capped with bulky poly(ethylene glycol) derivatives bearing ester groups (1 and 2). N3-N4 nanoparticles are loaded with sulforhodamine B and capped with self-immolative derivatives bearing ester moieties. In the absence of esterase enzyme negligible cargo release from N1, N3 and N4 nanoparticles is observed whereas a remarkable release for N2 is obtained most likely due to the formation of an irregular coating on the outer surface of the nanoparticles. In contrast, a marked delivery i…

Materials science102 Porous / Nanoporous / Nanostructured materialslcsh:BiotechnologyNanoparticle02 engineering and technologyGating010402 general chemistryEngineering and Structural Materials01 natural scienceslaw.inventionSilica nanoparticlesRhodamine 6Gchemistry.chemical_compoundlaw10 Engineering and Structural materialslcsh:TP248.13-248.65lcsh:TA401-492General Materials ScienceCalcinationgated nanodevices021001 nanoscience & nanotechnologyesterase controlled release0104 chemical sciencesChemical engineeringchemistrylcsh:Materials of engineering and construction. Mechanics of materials0210 nano-technologyMesoporous materialmesoporous nanoparticles
researchProduct